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Renormalization of fluctuating tilted hexatic membranes

Jeong-Man Park
Department of Physics, The Catholic University of Korea, Puchon, Korea

~Received 1 October 1996!

We consider the tilted hexatic Hamiltonian on the fluctuating membranes. A renormalization-group analysis
leads us to find three critical regions; two correspond to the strong coupling regimes of the gradient cross
coupling where we find the~anti!locked tilted hexatic to liquid phase transition, the other to the weak coupling
regime where we find four phases; the unlocked tilted hexatic phase, the hexatic phase, the tilted phase, and the
liquid phase. The crinkled-to-crumpled transition of the fluctuating tilted hexatic membranes is also described.
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Lyotropic liquid-crystal systems show a variety of phas
with different types of in-plane two-dimensional~2D! order.
Among the most interesting are the tilted hexatic phas
which have quasi-long-range order in two order parame
~the orientation of the local bond and the direction of t
local molecular tilt!, but only short-range translational orde
Recently, there has been considerable progress in un
standing tilted hexatic phases on the rigid layered liq
crystals. Selinger and Nelson@1# have presented a Landa
theory for transitions among tilted hexatic phases. They c
sider the tilt-bond interaction potential and find several d
ferent hexatic phases differing from each other in the rela
between the local bond orientation and the local tilt direct
depending on the interaction potential parameters. Howe
they consider only phase transitions between low temp
ture phases~tilted hexatic phases! on the rigid 2D plane, in
which disclinations in the bond orientational angle fie
u6(u) and vortices in the tilt-angle fieldu1(u) can be ne-
glected.

In this Rapid Communication, we present a Land
theory, without the tilt-bond interaction potential, for trans
tions from tilted hexatic phase to disordered liquid phase
the fluctuating membranes. We consider the fluctuat
membranes with the tilt and the hexatic in-plane orders
scribed by the order parametersc15eiu1 andc65ei6u6, re-
spectively. The tilt and the hexatic orders are coupled to e
other via a gradient cross coupling introduced by Nelson
Halperin @2#. Depending on this gradient cross coupling p
rameter, we find three critical regions in the phase spac
the tilt stiffnessK1, the hexatic stiffnessK6, and the gradient
cross couplingK16; two correspond to the strong couplin
and the other to the weak coupling. We also show that w
out the tilt-bond interaction potential there exist a couple
different tilted hexatic phases. Finally, we discuss the cru
pling transition of the fluctuating membranes with the tilt a
the hextic in-plane orders.

We parametrize the membrane by its position vector a
function of standard Cartesian coordinatesx5(x,y);

R~x!5„x,h~x!…, ~1!

where h(x) measures the deviation from the flat surfac
This is called a Monge gauge. Associated withR(x) is a
metric tensorgab(x)5]aR(x)•]bR(x) and a curvature ten
sor Kab(x) defined viaKab(x)5N(x)•]a]bR(x), where
561063-651X/97/56~1!/47~4!/$10.00
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N(x) is the local unit normal to the surface. From the curv
ture tensorKab , the mean curvatureH, and the Gaussian
curvatureK, are defined as follows:

H5 1
2g

abKba , K5detgalKlb , ~2!

where gab is the inverse tensor ofgab satisfying
galglb5db

a . In the continuum elastic theory, the long
wavelength properties of a fluctuating membrane are
scribed by the Helfrich-Canham Hamiltonian@3#

HHC5
1

2E d2xAg~kH21 k̄K1s!, ~3!

whereg5detgab , k is the bending rigidity,k̄ is the Gauss-
ian rigidity, ands is the tension of the membrane. The fir
term is the mean curvature energy, the second the Gaus
curvature energy, and the third the surface tension ene
We are mostly interested in free membranes for which
topology is fixed and the renormalized surface tension
tained by differentiating the total free energyF with respect
to the total surface areaA (sR5]F/]A), is zero. Therefore,
we will ignore the Gaussian curvature energy due to the
pological invariance~the Gauss-Bonnet theorem! @5# and the
surface tension energy with the understanding that it is re
present if we want to keep track of howsR actually becomes
zero@6#. In the Monge gauge, the mean curvature energy
the geometric shape fluctuations becomes

HHC5
1

2
kE d2xA11~¹h!2F¹•S ¹h

A11~¹h!2
D G 2. ~4!

We consider the Hamiltonian for the tilt and the hexa
orders on a fluctuating membrane@4#,

HTH5 1
2K1E d2xAggab~]au12Aa!~]bu12Ab!

1 1
2 ~36K6!E d2xAggab~]au62Aa!~]bu62Ab!

1~6K16!E d2xAggab~]au12Aa!~]bu62Ab!,

~5!
R47 © 1997 The American Physical Society
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in terms of the local bond-angle fieldu6(u) and the tilt-angle
field u1(u). The constants multiplied to the stiffness
(K1 ,K16,K6) are introduced to show the symmetry in th
recursion relations which will be shown later. The gau
field Aa describes how the basis vector rotates under par
transport according to the Gaussian curvature of the sur
@7#. For simplicity, we dropped the tilt-bond interaction p
tential. Effects of the tilt-bond interaction near the fixe
points may change the phase diagram qualitatively and
serve further investigation.

Thus we have the full HamiltonianH5HHC1HTH to de-
scribe a fluctuating tilted hexatic membrane. We follow Pa
and Lubensky’s treatment of the topological defects on fl
tuating surfaces@8#, and obtain the tilted hexatic membran
partition function

Z5E DR Df1Df6e
2L, ~6!

with the effective Hamiltonian which is the two-field sine
Gordon Hamiltonian coupled to each other via the o
diagonal propagator and coupled to the geometry fluctuat
by linear coupling to the scalar curvatureR which is twice
the Gaussian curvatureR52K

L5
1

2E d2x¹fmMmn
21¹fn1

i

2pE d2x~f11f6!R

2
2y1
a2 E d2x cosf12

2y6
a2 E d2x cosf61HHC, ~7!

where we setb5(1/kBT)51 and

Mmn5S K1 K16

K16 K6
D , ~8!

a is the short-distance cutoff,y1 (y6) is the fugacity of vor-
tices ~disclinations!, andf1 (f6) is the conjugate field to
vortices ~disclinations!. WhenAg is expanded in terms o
h, nonvanishing lowest order terms inh are irrelevant and
Ag is dropped in Eq. ~7!. In order to establish the
renormalization-group~RG! recursion relations for the tilted
hexatic rigidities, (K1 ,K16,K6), and the fugacities
(y1 ,y6), we study the renormalization of the two-point ve
tex functionsGfmfn

(2) (q) for the effective Hamiltonian in Eq

~7!. Using the sine-Gordon renormalization analysis by P
and Lubensky@9#, we find three critical regions.

~1! The strong coupling regimes near the poin
S6[(K1 ,K16,K6)5(2/p,62/p,2/p); to leading order in
the fugacities, we obtain

d

dl
K1524p3~K1y11K16y6!

2,

d

dl
K6524p3~K16y11K6y6!

2, ~9!

d

dl
K16524p3~K1y11K16y6!~K16y11K6y6!,
e
el
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d

dl
y15~22pK1!y1 ,

d

dl
y65~22pK6!y6 . ~10!

In the above equations,l is the renormalization-group param
eter. As a check on these results, we setK15K16

2 /K6 ini-
tially, and find that this self-duality condition is preserve
under our renormalization transformation;

d

dlSK12
K16
2

K6
D 50 ~11!

as it should be. To study the system in the critical regio
near the pointsS6 , it is useful to introduce deviations de
fined by

K1
215p/2~11X1!, K6

215p/2~11X6! ~12!

K16
215p/2~16X16!, ~13!

as well as rescaled fugacities

Y1
258p2y1

2 , Y6
258p2y6

2 . ~14!

To lowest order in these variables, the recursion relati
become

dX1
dl

5
dX16
dl

5
dX6
dl

5~Y11Y6!
2, ~15!

dY1
dl

52X1Y1 ,
dY6
dl

52X6Y6 . ~16!

The flows generated by this system of the recursion relati
are similar to the flows in theXY model @10#. The phase
diagram in these regimes is shown in Fig. 1.

In the shaded region, the long-wavelength properties
the phase is described by the Hamiltonian in Eq.~5! with
renormalized tilted hexatic stiffnesses (K1

R,K16
R ,K6

R). With
the initial values K1(0)5K6(0)56K16(0) and Y1(0)
5Y6(0), this effective Hamiltonian is minimized when tw
angle fields are antilocked~locked! by the constraint

FIG. 1. Phase diagram in the strong coupling regime n
S6[(K1 ,K16,K6)5(2/p,62/p,2/p). The shaded region is the
antilocked~locked! tilted hexatic phase, outside the disordered l
uid phase. At the antilocked~locked! tilted hexatic–liquid phase
boundary, disclinations and vortices unbind simultaneously.
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56 R49RENORMALIZATION OF FLUCTUATING TILTED . . .
¹u1576¹u6 in the mean field level, and taking into ac
count thermal fluctuations the resulting state is the antiloc
~locked! tilted hexatic phase nearS1 (S2) in which the cor-
relation functions show quasi-long-range order;

D16[^c1~r !c6~0!&.r2hD near S1 ~17!

C16[^c1~r !c6* ~0!&.r2hC near S2 , ~18!

where the exponentshC andhD are related by

hC5hD5
1

2pK1
R . ~19!

Disclinations and vortices are irrelevant in this region. A
K1, uK16u, andK6 are destabilized and pushed toward sma
values when eithery1 or y6 starts to grow. This happen
when K1<2/p or K6<2/p, and we expect the antilocke
~locked! tilted hexatic–liquid phase boundary when disclin
tions and vortices unbind simultaneously.

~2! The weak coupling regime near the poi
W[(K1 ,K16,K6)5(2/p,0,2/p); to leading order in the
fugacities, we obtain

d

dl
K1524p3~K1

2y1
21K16

2 y6
2!,

d

dl
K6524p3~K16

2 y1
21K6

2y6
2!, ~20!

d

dl
K16524p3~K1K16y1

21K6K16y6
2!,

d

dl
y15~22pK1!y1 ,

d

dl
y65~22pK6!y6 . ~21!

With the variables defined near the strong coupling fix
point except forK16 and definingK̄165(p/2)K16, we re-
write the system near the pointW to lowest order,

dX1
dl

5Y1
21K̄16

2 Y6
2 ,

dX6
dl

5Y6
21K̄16

2 Y1
2 , ~22!

dK̄16

dl
52K̄16~Y1

21Y6
2!, ~23!

dY1
dl

52X1Y1 ,
dY6
dl

52X6Y6 . ~24!

Although the flows generated by this system are com
cated, it is easy to check that the quantity

C52X1
212X6

224X1X6K̄16
2 2~Y1

21Y6
2! ~25!

is invariant to leading order along the trajectories,

d

dl
C50. ~26!

Since C is entirely determined by Eq.~25! evaluated at
l50, it is an analytic function of the initial conditions. Ac
d

l
r

-

d

i-

cording to the recursion formula~23!, the spaceK1650 is
attractive and the long-wavelength properties are descr
by two independent sets of theXY-like renormalization re-
cursion relations; one for the tilted-angle field, the other
the hexatic-angle field. The phase diagram in this regi
with K1650 is shown in Fig. 2.

K1 is destabilized wheny1 starts to grow and this happen
whenK1,2/p andK6 is destabilized wheny6 starts to grow
and this happens whenK6,2/p, respectively. Since thes
instabilities occur independently, we expect there are f
different phases; the unlocked tilted hexatic phase,
hexatic phase, the tilted phase, and the liquid phase.
phase boundaries are given byK152/p andK652/p.

These two sets of the recursion relations are differ
from those derived by Nelson and Halperin. Their recurs
relations seem to be in range of the small gradient cr
coupling. Those are the same as the recursion relations in
weak coupling regime in this Rapid Communication exce
the recursion relation for the gradient cross coupling para
eter. They claimeddK16/dl50, andK16 remains fixed at its
initial value to leading order in the fugacities. However, w
find the recursion relation for the gradient cross coupl
parameter nonvanishing in the weak coupling regime us
the sine-Gordon field theoretic approach as well as
method of Kosterlitz@12# employed by Nelson and Halperin
and the spaceK1650 in the phase space is attractive so th
the initial nonvanishing value near the weak coupling critic
point is pushed toward a smaller value. In addition, we fin
completely different set of the recursion relations in t
strong coupling regimes of the gradient cross coupling.
Kosterlitz’s description, configurations of hybrid vortex
disclination pairs are created in addition to vortex antivor
and61 disclination pairs to make the recursion relations
the strong coupling regimes different from those in the we
coupling regime where there is no logarithmic effective
teraction between vortices and disclinations. Between
weak and strong coupling regimes along theK16 axis, there
must be crossover regions nearK16561/p which are not
accessible by the perturbation expansion employed in

FIG. 2. Phase diagram in the weak coupling regime n
W[(K1 ,K16,K6)5(2/p,0,2/p). Four phases—the unlocke
tilted—hexatic phase~doubly shaded region!, the tilted phase
~shaded region withX1,0,X6.0), the hexatic phase~shaded re-
gion withX1.0,X6,0), and the liquid phase~unshaded region!—
are shown. At the each phase boundary, disclinations and vor
unbind independently.
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Rapid Communication. Higher order terms in the fugacit
and the deviations from the critical points than the lead
orders included in this Rapid Communication are necess
in the crossover regions@11#. To connect the renormalizatio
flows in a topologically correct way in the weak and stro
coupling regions, it is necessary to exploit the crossover
gion using the nonperturbative method.

To complete the RG recursion relations for the effect
HamiltonianL, we study the renormalization ofGhh

(2)(q) and
obtain

d

dl
k52

3

4pF12
1

4k
~K112uK16u1K6!G ~27!

in the strong coupling regime and

d

dl
k52

3

4pF12
1

4k
~K11K6!G ~28!

in the weak coupling regime. The renormalization of t
bending rigidity is the same in both regimes except the
pearance ofK16 in the recursion relation for the strong co
pling regime. DefiningK112K161K65k for the strong cou-
pling regimes, we find a fixed line corresponding to t
crinkled phase at 4k5k, and the crinkled-to-crumpled tran
sition occurs atk58/p. The renormalized bending rigidity o
the ~anti-!locked tilted hexatic crinkled phase isk52/p. In
the weak coupling regime, there are three crinkled pha
differing from each other in the internal ordering. The tilte
and the hexatic crinkled phases has the renormalized ben
rigidity k51/2p and the unlocked tilted hexatic crinkle
phase hask51/p. Thus the crinkled phase in the stron
coupling regime has a stiffer bending rigidity than those
the weak coupling regime.
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We have presented phase transitions between the in
nally ordered phase to the disordered liquid phase on
fluctuating membranes using the sine-Gordon renormal
tion analysis in the absence of the tilt-bond interaction.
this Rapid Communication we have considered two differ
kinds of internal orders; tilt order and hexatic order. The
may be other kinds of internal orders, too. The results de
oped here can be applied to any two kinds of internal ord
When there are two kinds of internal orders on the fluctu
ing membrane, there exist two order-disorder transitions
the crumpling transition. These order-disorder transitions
cur simultaneously if the coupling constant between two
ternal orders is in the strong coupling regime, independe
if it is in the weak coupling regime. The crumpling transitio
occurrs when the last existing internal order disappears
the membrane goes into the liquid phase. Thus if the me
brane has at least one kind of internal order, the membran
crinkled, not crumpled, with nonvanishing renormaliz
bending rigidity.

Inclusion of the tilt-bond interaction in the tilted hexact
Hamiltonian may change the qualitative properties of
fluctuating membranes such as the stiffness of the m
branes in the absence of the internal orders or the relat
between the local bond orientation and the local tilt direct
in the tilted hexatic phase. The tilt-bond interaction can
intepreted as the third internal order with proper modificat
to make the renormalization analysis complicated but p
sible. The sine-Gordon approach to the Hamiltonian with
tilt-bond interaction is under investigation.
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