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Renormalization of fluctuating tilted hexatic membranes
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We consider the tilted hexatic Hamiltonian on the fluctuating membranes. A renormalization-group analysis
leads us to find three critical regions; two correspond to the strong coupling regimes of the gradient cross
coupling where we find thénti)locked tilted hexatic to liquid phase transition, the other to the weak coupling
regime where we find four phases; the unlocked tilted hexatic phase, the hexatic phase, the tilted phase, and the
liquid phase. The crinkled-to-crumpled transition of the fluctuating tilted hexatic membranes is also described.
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PACS numbes): 87.22.Bt, 05.70.Jk, 68.16m

Lyotropic liquid-crystal systems show a variety of phasesN(x) is the local unit normal to the surface. From the curva-

with different types of in-plane two-dimension@D) order.  ture tensorK 4, the mean curvaturél, and the Gaussian
Among the most interesting are the tilted hexatic phasessurvaturek, are defined as follows:

which have quasi-long-range order in two order parameters

(the orientation of the local bond and the direction of the H=39"Kz,, K=deg®K,z, %)
local molecular tilg, but only short-range translational order.

Recently, there has been considerable progress in undewhere g“? is the inverse tensor ofg,; satisfying
standing tilted hexatic phases on the rigid layered quuidga%ngag, In the continuum elastic theory, the long-
crystals. Selinger and Nelsdd] have presented a Landau wavelength properties of a fluctuating membrane are de-
theory for transitions among tilted hexatic phases. They conscribed by the Helfrich-Canham Hamiltoni§3]

sider the tilt-bond interaction potential and find several dif-

ferent hexatic phases differing from each other in the relation 1 _

between the local bond orientation and the local tilt direction HHCZEJ d2X\g(kH?+ kK + o), ©)
depending on the interaction potential parameters. However,

they consider only phase transitions between low tempera-

. , o PElWhereg=deg,, « is the bending rigidity « is the Gauss-
ture phasestilted hexatic phasgson the rigid 2D plane, in . b aps . !
which disclinations in the bond orientational angle field 2" rigidity, ando s the tension of the membrane. The first
85(u) and vortices in the tilt-angle field,(u) can be ne term is the mean curvature energy, the second the Gaussian

6 a 1 -

glected. curvature energy, and the third the surface tension energy.

In this Rapid Communication, we present a Landauwe are mostly interested in free membranes for which the

theory, without the tilt-bond interaction potential, for transi- topology is fixed and the renormalized surface tension ob-

tions from tilted hexatic phase to disordered liquid phase orgamed by differentiating the total free energ@ywith respect

the fluctuating membranes. We consider the quctuating%s the total surface ared (or=07/0A), Is zero. Therefore,

membranes with the tilt and the hexatic in-plane orders de- N W'.” Ignore _the Gaussian curvature energy due to the to-
scribed by the order parametagg=e' 1 and =%, re- pological invarianceéthe Gauss-Bonnet theoreft] and the

spectively. The tilt and the hexatic orders are coupled to eacﬁurface tension energy with the understanding that it is really

other via a gradient cross coupling introduced by Nelson angresent if we want to keep track of haw, actually becomes

Halperin[2]. Depending on this gradient cross coupling pa_zero[G]. In the Monge gauge, the mean curvature energy for

rameter, we find three critical regions in the phase space gpe geometric shape fluctuations becomes

the tilt stiffnessK, the hexatic stiffneskg, and the gradient 1 vh 2
cross coupling,5; two correspond to the strong coupling H :_Kf d2x1+ (Vh)2 || @
and the other to the weak coupling. We also show that with- He2 (Vh) V1+(Vh)? @
out the tilt-bond interaction potential there exist a couple of
different tilted hexatic phases. Finally, we discuss the crum- We consider the Hamiltonian for the tilt and the hexatic
pling transition of the fluctuating membranes with the tilt andorders on a fluctuating membrapd],
the hextic in-plane orders.

We parametrize the membrane by its position vector as a . 2 B
function of standard Cartesian coordinates(x,y); Hrw=3Kq | d2X\gg(0,6,—A,) (901~ Ap)

V-

R(x)=(x.h(x)), @ + 1(36Ke) f 02X OB ( 305~ A (3505~ Ag)

where h(x) measures the deviation from the flat surface.

This is called a Monge gauge. Associated WRIX) is a +(6K16)f d?x\/gg*#(9,01—AL) (3506~ Ap),
metric tensog, 5(x) = J,R(X) - 9zR(x) and a curvature ten-

sor K,s(x) defined viaK,z(x)=N(x)-d,dzR(X), where 5)
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in terms of the local bond-angle fieltf(u) and the tilt-angle X6
field 6,(u). The constants multiplied to the stiffnesses
(K{,K16,Kg) are introduced to show the symmetry in the
recursion relations which will be shown later. The gauge
field A, describes how the basis vector rotates under parallel
transport according to the Gaussian curvature of the surface
[7]. For simplicity, we dropped the tilt-bond interaction po-
tential. Effects of the tilt-bond interaction near the fixed

. . s B S S e P
points may change the phase diagram qualitatively and de- §:§§§:§§§:§:§:§:§:
. . . <P < I L

serve further investigation. e,
; oy SSSeesoTiseeosiseess

Thus we have the full Hamiltonial = Hyc+ Hyy to de- SSESeseSeset e eenseeees
scribe a fluctuating tilted hexatic membrane. We follow Park [S5ssssssssesessses
and Lubensky’s treatment of the topological defects on fluc- EESssesssess
2:”""“”"*.""‘.
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tuating surface$8], and obtain the tilted hexatic membrane
partition function

FIG. 1. Phase diagram in the strong coupling regime near
S.=(K{,Kq,Kg)=(2/7, %= 2/7,2/7). The shaded region is the

Z= f DR D¢ Dpge -, (6) antilocked(locked tilted hexatic phase, outside the disordered lig-
uid phase. At the antilockeflocked tilted hexatic—liquid phase

with the effective Hamiltonian which is the two-field sine- boundary, disclinations and vortices unbind simultaneously.

Gordon Hamiltonian coupled to each other via the off- q d
diagonal propagator and coupled to the geometry fluctuations —v.=(2— 7K —Ve=(2— 7K . (10
by linear coupling to the scalar curvatuRe which is twice ar¥ DY gpYe= oY

the Gaussian curvatur= 2K L o
In the above equationkjs the renormalization-group param-

eter. As a check on these results, we Ket=K3/Kg ini-

1 i
L= fj d’xV,M V¢, + 2—f d?(p1+ )R tially, and find that this self-duality condition is preserved
m under our renormalization transformation;
2y, 2y 2
- ?j d?x cosp;— ?f d?x cospg+ Huc, (7) % Ko KK_le) 0 i
6

where we se=(1kgT)=1 and as it should be. To study the system in the critical regions

K. K near the pointsS. , it is useful to introduce deviations de-
|t T8 fined by
M, = , 8
* (K16 Ke) ® 1 1

Kil=m/2(1+X,), Kgl=ml2(1+Xs) (12
a is the short-distance cutof§,; (ys) is the fugacity of vor- .
tices (disclinationg, and ¢, (¢¢) is the conjugate field to Kie = m/2(1% Xys), (13
vortices (disclinations. When \/g is expanded in terms of "
h, nonvanishing lowest order terms mare irrelevant and S Well as rescaled fugacities
Jg is dropped in Eq.(7). In order to establish the 2_q 2,2 2_q 2,2

ot . . . Y{=8 , Yz=8 . 14
renormalization-grougRG) recursion relations for the tilted 1=8mYL 6=Sm Yo (4
hexatic  rigidities, K,Ki,Kg), and the fugacities, To |owest order in these variables, the recursion relations
(Y1,Ye), we study the renormalization of the two-point ver- pecome
tex functionsI'(?), (q) for the effective Hamiltonian in Eq.

ut X, dXg dX

(7). Using the sine-Gordon renormalization analysis by Park _ —6:(Y +Yg)2 (15)
and Lubensky 9], we find three critical regions. dl dl dl 1rrelo
(1) The strong coupling regimes near the points
S.=(K,Ky6,Kg) = (2/7,=2/m,2/7); to leading order in dy; dYe
the fugacities, we obtain W‘leYl' W‘2X6Y6' (16)

| o

3 ) The flows generated by this system of the recursion relations

Ki=—4m(Kyy1+Kieye)®, are similar to the flows in th&Y model [10]. The phase
diagram in these regimes is shown in Fig. 1.
In the shaded region, the long-wavelength properties of

Ke=—4m(Kigy1+KgYe)?, 9) the phase is described by the Hamiltonian in Es). with
renormalized tilted hexatic stiffnesse&{,KT,,KE). with
the initial values K;(0)=Kg(0)=*K;40) and Y,(0)
=Y¢(0), this effective Hamiltonian is minimized when two
angle fields are antilockedlocked by the constraint

2

2 a

d
mKlﬁz —4m3(Kyy;+Kieys) (Kigy1+Keye),
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VO,=F6V86g in the mean field level, and taking into ac- X6
count thermal fluctuations the resulting state is the antilocked
(locked tilted hexatic phase ned (S_) in which the cor-
relation functions show quasi-long-range order;
Die=(¢a1(r)he(0))=r"" near S, (17
Cie=(¢1(r) g (0))=r"7c near S_, (18) X1
where the exponents: and 7 are related by
et 19
Nc= 77D—27_rK1R- (19

Disclinations and vortices are irrelevant in this region. All
K1, K14, andKg are destabilized and pushed toward smaller

FIG. 2. Phase diagram in the weak coupling regime near

values when eithey, or yg starts to grow. This happens yy—(k,,K s Ke)=(2/7,0,2/7). Four phases—the unlocked
whenK;<2/m or Kg=<2/7, and we expect the antilocked tjlted—hexatic phase(doubly shaded region the tilted phase
(locked tilted hexatic—liquid phase boundary when disclina- (shaded region wittX;<0Xs>0), the hexatic phaséshaded re-

tions and vortices unbind simultaneously.

(20 The weak coupling regime near
W=(K;,K5,Kg) =(2/7,0,2/7); to leading order in the
fugacities, we obtain

d

grKa= —4m(Kiyi+Kiye),

d
giKe=—4m*(Kigyi +Kgyd), (20
d 3 2 2
gy K1e= —4m (K1Kaey1 + KeKyeYa),
d d
grVi= (2= 7Ky, 5¥e= (2= 7Ke)ys.  (21)

With the variables defined near the strong coupling fixe

point except forK,s and definingK_m:(w/Z)Kle, we re-
write the system near the point to lowest order,

dX,

dx
S =YirKLYE, o= YerKiYl o (22
dKys  —
i = —Ki(Y2+Y2), (23
dy, dYs
W:2X1Y11 WZZXGYG (24)

gion with X;>0,X¢<0), and the liquid phas@nshaded regiop—

the point are shown. At the each phase boundary, disclinations and vortices

unbind independently.

cording to the recursion formulé23), the spaceK ;=0 is
attractive and the long-wavelength properties are described
by two independent sets of th€Y-like renormalization re-
cursion relations; one for the tilted-angle field, the other for
the hexatic-angle field. The phase diagram in this regime
with K46=0 is shown in Fig. 2.

K, is destabilized whew, starts to grow and this happens
whenK<2/7 andKg is destabilized whewg starts to grow
and this happens whelig<<2/7, respectively. Since these
instabilities occur independently, we expect there are four
different phases; the unlocked tilted hexatic phase, the
hexatic phase, the tilted phase, and the liquid phase. The
phase boundaries are given Ky=2/7 andKg=2/7r.

These two sets of the recursion relations are different

dfrom those derived by Nelson and Halperin. Their recursion

relations seem to be in range of the small gradient cross
coupling. Those are the same as the recursion relations in the
weak coupling regime in this Rapid Communication except
the recursion relation for the gradient cross coupling param-
eter. They claimedK,¢/dI=0, andK ;5 remains fixed at its
initial value to leading order in the fugacities. However, we
find the recursion relation for the gradient cross coupling
parameter nonvanishing in the weak coupling regime using
the sine-Gordon field theoretic approach as well as the
method of Kosterlit12] employed by Nelson and Halperin,
and the spac& z=0 in the phase space is attractive so that
the initial nonvanishing value near the weak coupling critical

cated, it is easy to check that the quantity

C=2X342X2— 4X XK 2~ (Y2+Y2) (25
is invariant to leading order along the trajectories,
d

Since C is entirely determined by Eq(25 evaluated at

completely different set of the recursion relations in the
strong coupling regimes of the gradient cross coupling. In
Kosterlitz’'s description, configurations of hybrid vortex-
disclination pairs are created in addition to vortex antivortex
and =1 disclination pairs to make the recursion relations in
the strong coupling regimes different from those in the weak
coupling regime where there is no logarithmic effective in-
teraction between vortices and disclinations. Between the
weak and strong coupling regimes along g axis, there
must be crossover regions nedgs= * 1/ which are not

=0, it is an analytic function of the initial conditions. Ac- accessible by the perturbation expansion employed in this
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Rapid Communication. Higher order terms in the fugacities We have presented phase transitions between the inter-
and the deviations from the critical points than the leadingnally ordered phase to the disordered liquid phase on the
orders included in this Rapid Communication are necessarfjuctuating membranes using the sine-Gordon renormaliza-
in the crossover regiorid 1]. To connect the renormalization tion analysis in the absence of the tilt-bond interaction. In
flows in a topologically correct way in the weak and strongthis Rapid Communication we have considered two different
coupling regions, it is necessary to exploit the crossover rekinds of internal orders; tilt order and hexatic order. There
gion using the nonperturbative method. may be other kinds of internal orders, too. The results devel-
To complete the RG recursion relations for the effective®Ped here can be applied to any two kinds of internal orders.

HamiltonianZ, we study the renormalization di’l‘hzh)(q) and When there are two kln(;is of internal o_rders on the. fluctuat—
obtain ing membrane, there exist two order-disorder transitions and

the crumpling transition. These order-disorder transitions oc-
d 3 1 cur simultaneously if the coupling constant between two in-
— k= —[1— — (K1 +2|K 44 +K6)} (27)  ternal orders is in the strong coupling regime, independently
di 4 4 if it is in the weak coupling regime. The crumpling transition
occurrs when the last existing internal order disappears and
the membrane goes into the liquid phase. Thus if the mem-
1 brane has at least one kind of internal order, the membrane is
1-—(K;+ Ke)} (28)  crinkled, not crumpled, with nonvanishing renormalized
4K bending rigidity.

Inclusion of the tilt-bond interaction in the tilted hexactic
Hamiltonian may change the qualitative properties of the
pearance oK g in the recursion relation for the strong cou- quctuatmg membranes such as the stiffness of the mem-

branes in the absence of the internal orders or the relations

ling regime. Definind< ; + 2K 1+ K=k for the strong cou- . . S .
Sl:ng regg;imes V\;el f?r?dl a fi;gd ”?]e corresponding touthebetween the local bond orientation and the local tilt direction

crinkled phase at 4=k, and the crinkled-to-crumpled tran- In the tilted hexatic_ phase. The tiIt-bo_nd interaction_(_:an_be
sition occurs ak=8/7r. The renormalized bending rigidity of intepreted as the third |_nte_rnal order \.N'th proper modification
the (anti-)locked tilted hexatic crinkled phase is=2/. In tq make th? renormalization analysis compl_matgd bqt pos-
the weak coupling regime, there are three crinkled phase ible. The sine-Gordon approach to the Hamiltonian with the

differing from each other in the internal ordering. The tilted tit-bond interaction is under investigation.

and the hexatic crinkled phases has the renormalized bending The author is grateful to Professor Lubensky for helpful

rigidity «=1/2mr and the unlocked tilted hexatic crinkled conversations and a careful reading of the manuscript. This
phase hasc<=1/7. Thus the crinkled phase in the strong work was supported in part by the Penn Laboratory for Re-
coupling regime has a stiffer bending rigidity than those insearch in the Structure of Matter under NSF Grant No. 91-
the weak coupling regime. 20668.

in the strong coupling regime and

in the weak coupling regime. The renormalization of the
bending rigidity is the same in both regimes except the ap
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